Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
From 1 - 10 / 1842
  • Mesopelagic fish gut content data from the Kerguelen Axis ecosystem study (AAS_4344): These data are based on samples collected as part of the Kerguelen Axis marine ecosystem study (AAS_4344), chief scientist Andrew Constable. This research was supported by the Australian government under the (i) Cooperative Research Centre Program through the Antarctic Climate and Ecosystems Cooperative Research Centre (ACE CRC), (ii) Australian Antarctic Science Program (Projects 4343, 4344, 4347 and 4366), and (iii) Australian Research Council’s Special Research Initiative for Antarctic Gateway Partnership (Project ID SR140300001). The preferred citation is: Riaz, J., Walters, A., Trebilco, R., Bestley, S., Lea, M-A. (2019) Stomach content analysis of mesopelagic fish from the southern Kerguelen Axis. Deep Sea Research Part II: Topical Studies in Oceanography. Samples for gut content analysis were collected on board the R.S.V Aurora Australis during the austral summer of 2016 (22 January-17 February) during the Kerguelen Axis marine ecosystem survey (AAS_4344). Analyses focused on four of the most common and widespread Southern Ocean mesopelagic fish species: three myctophids (Electrona antarctica, Gymnoscopelus braueri, Krefftichthys anderssoni), and one bathylagid (Bathylagus antarcticus). Species were sampled across a broad range of size classes to investigate the influence of predator size on predator and prey size relationships. Fish were collected from six sampling stations along the major south-to-north transect of the Kerguelen Axis. Three sampling sites were located in subpolar waters south of the Southern Boundary (SB) of the Antarctic Circumpolar Current (ACC) over the Princess Elizabeth Trough. The other three sampling sites were located north of the Southern Antarctic Circumpolar Circulation Front (SACCF) over the Banzare Bank on the southern Kerguelen Plateau.The contribution and relative importance of prey taxa to stomach contents was quantified with four traditional metrics of dietary composition (Hyslop 1980). These were calculated for each fish species separately at northern and southern sampling stations, and across species within all stations. Hyslop, E. J. (1980) Stomach contents analysis-a review of methods and their application. Journal of Fish Biology 17:411.

  • Aerial photography (Linhof) of penguin colonies was acquired over the Rauer Group (Eric Woehler). The penguin colonies were traced, then digitised (John Cox), and saved as DXF-files. Using the ArcView extension 'Register and Transform' (Tom Velthuis), The DXF-files were brought into a GIS and transformed to the appropriate islands.

  • This dataset contains the underway data collected during the Aurora Australis Voyage V4 2007/08. Voyage Objectives : MAWSON and CASEY RESUPPLY Personnel retrieval Voyage leader: Ms. Nicki Chilcott Deploy and retrieve personnel - Casey, Mawson, Davis. The need to retrieve personnel by ship is subject to review on implementation of intercontinental air transport. Underway (meteorological) data are available online via the Australian Antarctic Division Data Centre web page (or via the Related URL section).

  • This dataset contains the underway data collected during the Aurora Australis Voyage 2 2004-05. This voyage began in Hobart, and went to Casey, Davis and Mawson before returning to Fremantle. Underway (meteorological) data are available online via the Australian Antarctic Division Data Centre web page (or via the Related URL section).

  • This is the CTD data set from RV Tangaroa cruise tan0803, 26th March to 26th April 2008, along the Macquarie Ridge. This was the recovery cruise for the Macquarie Ridge mooring array. The primary aims of the oceanographic program were: 1. recovery of a New Zealand/Australia collaborative mooring array spanning two gaps in the Macquarie Ridge north of Macquarie Island, and 2. occupation of a CTD transect running south from New Zealand to 60o S along the Macquarie Ridge. Eight of the nine moorings were successfully recovered. The mooring at site number 3 (NIWA gear) was unrecoverable, with acoustic release communication indicating only the bottom portion of the mooring remaining and lying flat on the ocean floor. Complete details of the mooring work are included in a separate mooring recovery report. Mooring instruments were downloaded on the ship, with a very high percentage of successful data recording. Ship maneouvering and deck operations all went well throughout the recoveries. Shiptime at the mooring locations was well spent, with daylight hours dedicated to mooring recovery, and night time used for nearby CTD, swath mapping, coring and sea mount activities, and for unspooling of mooring line. The additional container space created on the top deck portside (above the trawldeck) proved extremely valuable for stowage of mooring gear. 58 CTD's were completed during the cruise, including 54 along the main transect, and 4 at coring locations (part of the geology program). Main transect CTD's included 2 across the northern mooring group, and 3 across the southern mooring group. Most casts were to within 25 metres of the bottom. Instrument problems resulted in incomplete casts at the following locations: CTD 9, CTD 11 and CTD 27. CTD 46 was skipped due to bad weather, while further instrument problems prevented a cast at the southernmost site (CTD 50). Niskin bottles were sampled at each station for dissolved oxygen and salinity, with a subset of stations selected for 18O sampling. Some stations were additionally sampled for DIC, alkalinity, 13C, silicate, and U/Th, as part of the geology program. Note that dissolved oxygen data have been removed from this data set, as oxygen bottle samples were never analysed.

  • Locations of sampling sites for ASAC project 40 on voyage 1 of the Aurora Australis in the 2002/2003 season. Samples were collected between October and November of 2002. The final dataset will contain information on chlorophyll, carotenoids, coccolithophorids and species indentification and counts. Public Summary from the project: This program aims to determine the role of single celled plants, animals, bacteria and viruses in Antarctic waters. We quantify their vital role as food for other organisms, their potential influence in moderating global climate change through absorption of CO2 and production of DMS, and determine their response to effect of climate change. For more information, see the other metadata records related to ASAC project 40 (ASAC_40). The fields in this dataset are: Voyage Tube Label Date (UTC) Time (UTC) Time (Local) Nominal Depth (m) Latitude Longitude Sea Temperature Ice (Presence or Absence - 1 or 0) Plankton Net Sample

  • Metadata record for data from ASAC Project 2677 Data on the sensitivity of Antarctic marine organisms to contaminants is limited, and is essential to understanding the risks contaminants pose to the Antarctic environment. The use of traditional toxicity assessment approaches, to collect high quality sensitivity data for a range of species, is a time consuming and difficult process, especially in remote and hostile environments like Antarctica. In this project, we used a rapid toxicity test approach (described by Kefford et al. 2005) to determine the approximate sensitivity of a large and representative sample of Antarctic marine invertebrates to three common metals (cadmium, copper, zinc). Sensitivity estimates generated via this method are likely to be less precise than those derived from traditional toxicity test methods (due to lower replication and fewer exposure concentrations), but a much larger number of estimates for a wider and more representative range of taxa are able to be produced (under equivalent resourcing). This is advantageous for subsequent Species Sensitivity Distribution (SSD) models, which will include more species and will be more robust, producing protective concentration values that represent a greater proportion of the biodiversity of the region. In this study, a total of 88 different taxa were tested during the 2005/06 Austral summer at Casey station; specimens were collected from a wide range of intertidal and shallow sub-tidal marine sites, providing good representation of the nearshore marine invertebrate community as a whole for this region. Tests were of 10 day duration, with a water change at 4 days. Sensitivity estimates were modelled (LCx; concentrations lethal to x% of the test populations) at 4 and 10 days of exposure, calculated using measured metal concentrations. A series of SSDs were constructed using LC50 values, each one including sensitivity estimates for up to 87 taxa. SSDs were constructed using the Kaplan-Meier function (results provided here) and a log-likelihood based method (available via Kefford et al submitted 2018), both of which allowed inclusion of right- and interval-censored sensitivity data. The results of this work provides a basis for estimating the risk of exposure to three common metal contaminants to Antarctic marine invertebrates. Files: Four files are attached to this record: 1. ASAC_2677-1-Supplementary-Tables.xlsx Excel file containing: 1) LC50 values for all taxa tested, for 4 and 10 d exposure durations. Both modelled and non-modelled estimates are provided. 2) Taxonomic details for all taxa tested. 3) Hazardous concentrations (HCy) to 1%, 5%, 10%, 20% and 50% of the taxa tested (HC1, HC5, HC10, HC20 and HC50, respectively) in μg/L measured on various subgroups calculated from log-normal distributions. 2. AAS_2677-2-CaseyRapidTests_Modelled LCx.xlsx Excel file containing sensitivity estimate values. See ‘FileInfo’ worksheet for description of fields. 3. AAS_2677-3-CaseyRapidTests_Figs-Kaplan-Meier.docx Word document containing Species Sensitivity Distribution model plots, generated using the Kaplan-Meier function. Data are provided for cadmium, copper and zinc based on 4 day and 10 day LC50 values for Antarctic marine invertebrates (subgroup comparisons by phyla, Arthropoda order, abundance category), generating using a rapid testing approach. LC50 values used to generate these plots are provided in the Supplementary Information of Kefford et al (submitted 2018). 4. AAS_2677-4-CaseyRapidTests_Tables-Kaplan-Meier.xlsx Excel file containing results modelled using the Kaplan-Meier function. Includes two worksheets: - Table 1: Summary statistics of 4 and 10d LC50 values (µg/L measured) estimated from Kaplan-Meier functions for the taxa tested and various sub-groups. Values in brackets are 95% confidence intervals (CI). Values and CI omitted were not calculable with the data available. See Supplementary Figures S10-S22 for plots of the Kaplan-Meier functions. - Table 2: Hypothesis testing for differences in the Kaplan-Meier functions between SSD models (constructed using LC50 sensitivity estimates) for 3 metal and 2 exposure durations (4 and 10d) on various sub-groups using Log Rank (Mantel-Cox) test. NC = not calculable with the number of species tested.

  • This dataset contains the underway data collected during the Aurora Australis Voyage 4 2002-03. This voyage undertook extensive marine science activities North of Mawson. Mawson Harbour was visited twice during the cruise and Davis fly off position was reached once. Underway (meteorological, fluorometer, thermosalinograph and bathymetric) data are available online via the Australian Antarctic Division Data Centre web page (or via the Related URL section). For further information, see the Marine Science Support Data Quality Report at the Related URL section.

  • Adelie colony boundaries at Welch Island were mapped on the 30 Nov 2014 to provide a boundary for the pole camera survey. Subcolonies were mapped by circumnavigating the perimeter on foot while carrying a Garmin GPS (Legend and Etrex30) to record the track. When mapping the perimeter of the subcolonies a buffer distance of approximately 2.5 meters was maintained between the mapper and the breeding birds. This buffer distance was reduced by .5m to between 2m in the final shapefiles. Please refer to the Seabird Conservation Team Data Sharing Policy for use, acknowledgement and availability of data prior to downloading data.

  • This dataset contains the underway data from Voyage 4 1995-96 (BROKE) of the Aurora Australis. This was a manned marine science cruise. The major projects were a hydro-acoustic/trawl krill population survey, and the MARGINEX oceanographic survey on bottom water formation. CTD data were also obtained. Marine Science Support Data Quality and Programmer's Reports are available via the Related URL section.